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Abstract 10 

In this study we develop pronunciation distances based on naive discriminative learning (NDL). 11 

Measures of pronunciation distance are used in several subfields of linguistics, including 12 

psycholinguistics, dialectology and typology. In contrast to the commonly used Levenshtein algorithm, 13 

NDL is grounded in cognitive theory of competitive reinforcement learning and is able to generate 14 

asymmetrical pronunciation distances. In a first study, we validated the NDL-based pronunciation 15 

distances by comparing them to a large set of native-likeness ratings given by native American English 16 

speakers when presented with accented English speech. In a second study, the NDL-based 17 

pronunciation distances were validated on the basis of perceptual dialect distances of Norwegian 18 

speakers. Results indicated that the NDL-based pronunciation distances matched perceptual distances 19 

reasonably well with correlations ranging between 0.7 and 0.8. While the correlations were comparable 20 

to those obtained using the Levenshtein distance, the NDL-based approach is more flexible as it is also 21 

able to incorporate acoustic information other than sound segments.  22 
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Introduction 28 

Obtaining a suitable distance measure between two pronunciations is important, not 29 

only for dialectologists who are interested in finding the relationship between 30 

different dialects (e.g., [1]), but also for sociolinguists investigating the effect of 31 

political borders on vernacular speech [2], language researchers investigating the 32 

typological and genealogical relationships among the world’s languages (e.g., [3]), 33 

applied linguists attempting to gauge the degree of comprehensibility among related 34 

languages [4], and researchers measuring the atypicality of the speech of the bearers 35 

of cochlear implants [5]. Furthermore, having a distance measure between word 36 

pronunciations enables quantitative analyses in which the integrated effect of 37 

geography and sociolinguistic factors can be investigated (e.g., [6]). Standard 38 

sociolinguistic analyses focus on whether specific categorical differences are present 39 

in the speech of people from different social groups. By using a measure of 40 

pronunciation difference, we allow more powerful numerical analysis techniques to be 41 

used. For these analyses to be meaningful, however, the measurements of 42 

pronunciation distance need to match perceptual distances as closely as possible. 43 

 44 

There are various computational methods to measure word or pronunciation distance 45 

(or similarity), of which the Levenshtein distance has been the most popular 46 

[1,7,8,9,10]. The Levenshtein distance determines the pronunciation distance between 47 

two transcribed strings by calculating the number of substitutions, insertions and 48 

deletions to transform one string into the other [11]. For example, the Levenshtein 49 

distance between two accented pronunciations of the word Wednesday, [wɛnzdeɪ] and 50 

[wɛnəsde] is 3 as illustrated by the alignment in Table 1. 51 

 52 
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A clear drawback of this variant of the Levenshtein distance is that it does not 53 

distinguish the substitution of similar sounds (such as [o] and [u]) from more different 54 

sounds (such as [o] and [i]). Consequently, effort has been made to integrate more 55 

sensitive segment distances in the Levenshtein distance algorithm [1,12]. As manually 56 

determining sensitive segment distances is time-consuming and language-dependent, 57 

Wieling and colleagues [13] developed an automatic method to determine sensitive 58 

segment distances. Their method calculated the pointwise mutual information 59 

between two segments, assigning lower distances between segments which aligned 60 

relatively frequently and higher distances between segments which aligned relatively 61 

infrequently. Results indicated that the obtained segment distances were acoustically 62 

sensible and resulted in improved alignments [14]. Applying the adapted method to 63 

the example alignment shown above yields the associated costs shown in Table 2.  64 

 65 

While Levenshtein distances correlate well (r = 0.67) with perceptual dialect distances 66 

between Norwegian dialects [15], there is no cognitive basis to link the Levenshtein 67 

distance to perceptual distances (but see [16] for an attempt to adapt the Levenshtein 68 

algorithm in line with theories about spoken word recognition). This is also 69 

exemplified by the fact that the Levenshtein distance is symmetrical (i.e. the distance 70 

between speaker A and B is the same as the other way around), while perceptual 71 

dialect distances may also show an asymmetrical pattern [15]. 72 

 73 

As exposure to language shapes expectations and affects what is judged similar to 74 

one’s own pronunciation and what is different, we turn to one of the most influential 75 

theories about animal and human (discrimination) learning: the model of Rescorla and 76 

Wagner [17]. The basic assumption of this model is that a learner predicts an outcome 77 
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(e.g., the meaning of a word) based on the set of available cues (e.g., the sounds of a 78 

word). Depending on the correctness of the prediction, the association strengths 79 

between the outcome and the cues are adjusted so that future prediction accuracy 80 

improves. Concretely, if an outcome is present together with a certain cue, its 81 

association strength increases, while the association strength between an absent 82 

outcome and that cue decreases. When an outcome is found together with multiple 83 

cues (i.e. when there is cue competition), the adjustments are more conservative 84 

(depending on the number of cues). The learning theory of Rescorla and Wagner is 85 

formalized in a set of recurrence equations which specify the association strength 1t

iV   86 

of cue iC  with outcome O  at time 1t   as 1t t t

i i iV V V   , where the change in 87 

association strength t

iV  is defined as:  88 
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 90 

In this definition, PRESENT( , )X t  denotes the presence of cue X at time t  and 91 

ABSENT( , )X t  its absence at time t . Whenever the cue occurs without the outcome 92 

being present, the association strength is decreased, whereas it is increased when both 93 

the cue and outcome are present. The adjustment of the association strength depends 94 

on the number of cues present together with the outcome. The standard settings for the 95 

parameters are 1  , all 's equal, and 1 2  . 96 

 97 

The Rescorla-Wagner model has been used to explain findings in animal learning and 98 

cognitive psychology [18] and more recently, Ramscar and colleagues [19,20,21] 99 
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have successfully used this model in the context of children’s language acquisition. 100 

For example, Ramscar and colleagues [21] showed that the Rescorla-Wagner model 101 

clearly predicted that exposure to regular plurals (such as rats) decreases children’s 102 

tendency to over-regularize irregular plurals (such as mouses) at a certain stage in 103 

their development.  104 

 105 

Danks [22] proposed parameter-free equilibrium equations (i.e. where 1t t

i iV V  ) for 106 

the recurrence equations presented above: 
0

Pr( | ) Pr( | ) 0
n

i j i j

j

O C C C V


  , where 107 

Pr( | )j iC C  represents the conditional probability of cue jC  given cue iC , and 108 

Pr( | )iO C  the conditional probability of outcome O  given cue iC .  Consequently, it 109 

is possible to directly calculate the association strength between cues and outcomes in 110 

the stable (i.e. adult) state where further learning does not substantially change the 111 

association weights. Baayen and colleagues [23] have proposed an extension to 112 

estimate multiple outcomes in parallel. Their ‘naive discriminative learning’ (NDL) 113 

approach (implementing the Danks equations [22]) lends itself for efficient 114 

computation and is readily available via their R package ‘ndl’. More details about the 115 

underlying computations can also be found in [23].  116 

 117 

After all association strengths of the adult state are determined, the activation (i.e. 118 

activation strength) of an outcome given a set of cues can be calculated by summing 119 

the corresponding association strengths. Especially these activations are important for 120 

prediction. For example, Baayen and colleagues [23] found that the estimated 121 

activation of words correlated well with experimental reaction times to those words. 122 

 123 
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Here we propose to use naive discriminative learning to determine pronunciation 124 

distances. The intuition behind our approach is that a speaker of a certain dialect or 125 

language variety is predominantly exposed to speakers who speak similarly, and this 126 

input shapes the network of association strengths between cues (in our case, 127 

sequences of three sound segments representing the pronunciation, i.e. substrings of 128 

the phonetic transcription) and outcomes (in our case, the meaning of the pronounced 129 

word) for the speaker. The use of sequences of three segments, so-called trigrams, 130 

allows the measure to become sensitive to the adjustments sounds undergo in the 131 

context of other sounds, and trigrams have been experimented with in dialectology 132 

before [24]. (For comparison, we will also report results when using unigram and 133 

bigram cues.) By exposing the speaker to a new pronunciation (in the form of its 134 

associated cues) we can measure how well the speaker is likely to understand that 135 

pronunciation by inspecting the activation strength of the corresponding outcome. The 136 

activation strength of the outcome will depend on the association strengths between 137 

the outcome and the cues involved in the pronunciation. If only cues are present 138 

which have a high association strength with the outcome, the activation of the 139 

outcome will be high, whereas the activation of the outcome will be somewhat lower 140 

if one of the cues has a low association strength with the outcome. By calculating the 141 

activation strength difference for two different pronunciations of the same word, we 142 

obtain a (gradual) measure of pronunciation distance. For example, the word ‘with’ 143 

would be highly activated when a native English listener hears [wɪθ]. However, when 144 

a Mandarin speaker would incorrectly pronounce ‘with’ as [wɪz], this would result in 145 

a somewhat lower activation. 146 

 147 
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Of course, using an adult state with fixed association weights between cues and 148 

outcomes is a clear simplification. Language change is a continuous process and the 149 

experience of a listener (i.e. the association weights between cues and outcomes) will 150 

obviously be affected by this. However, as the new language experience only makes 151 

up a small part of the total language experience of a listener, the effect of the past 152 

experience is most important in determining the association weights. As a 153 

consequence, and in line with the results of Labov’s ([25]: Ch. 4) Cross-Dialectal 154 

Comprehension (CDC) studies (which evaluated how well American English speakers 155 

understand speakers from their own and other regions), our model will yield lower 156 

meaning activations (i.e. more misunderstandings) when sound change is in progress 157 

(i.e. the original sound segments will have a higher association strength with the 158 

meaning than the new sound segments). In similar fashion, our model predicts higher 159 

meaning activations for pronunciations closer to one’s own pronunciation variant (i.e. 160 

the “local advantage”). We also emphasize that our model is able to capture 161 

differences in understandability per word (as each word has its own frequency of 162 

occurrence) – which might explain Labov’s finding that certain sounds are not always 163 

correctly identified, even if they are characteristic of local speakers ([25]: pp. 84-85).  164 

Furthermore, the model we propose is general, as it does not focus on a selection of 165 

linguistic features (such as vowels), but takes into account all sound (sequences) in 166 

determining the understandability of a certain pronunciation.  167 

 168 

Besides being grounded in cognitive theory of competitive reinforcement learning, a 169 

clear benefit of this approach is that the pronunciation distances obtained do not need 170 

to be symmetrical, as they depend on the association strengths between cues and 171 



8 

 

outcomes, which are different for every speaker. This is illustrated in Section 2.2 172 

below.  173 

 174 

To evaluate the effectiveness of this approach, we conducted two experiments. The 175 

first experiment focused on investigating foreignness ratings given by native 176 

American English (AE) speakers when judging accented English speech, while the 177 

second experiment focused on the asymmetric perceptual distances of Norwegian 178 

dialect speakers. 179 

 180 

As we noted in the introduction, the Levenshtein distance has been applied to 181 

pronunciation transcriptions to assay the degree to which non-local pronunciations 182 

sound “different” from local ones (in dialectology, see [1]), but also to predict the 183 

comprehensibility of other language varieties (in applied sociolinguistics, see [4]). 184 

Since pronunciations may sound non-native or non-local without suffering in 185 

comprehensibility, one might suspect that the two notions are not the same, even if 186 

they are clearly related. In the present paper we construct a model of an artificial 187 

listener to discriminate well enough between words given sound trigrams, which is 188 

essentially a comprehension task. But we shall evaluate the same model on how well 189 

it predicts human judgments of how similar the speech is to one’s own pronunciation 190 

(i.e. how native-like foreign accents sound, or how close a pronunciation is to one’s 191 

own dialect). To the degree to which these experiments succeed, we may conclude 192 

that the degree of comprehensibility is largely the same as the degree of nativeness (or 193 

localness). 194 

 195 

 196 
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Materials and Methods 197 

1. Accented English speech 198 

1.1. Material: the Speech Accent Archive 199 

The Speech Accent archive [26] is digitally available at http://accent.gmu.edu and 200 

contains a large sample of speech samples in English from people with various 201 

language backgrounds. Each speaker read the same paragraph of 69 words (55 of 202 

which are unique) in English: 203 

 204 

Please call Stella. Ask her to bring these things with her from the store: six spoons of 205 

fresh snow peas, five thick slabs of blue cheese, and maybe a snack for her brother 206 

Bob. We also need a small plastic snake and a big toy frog for the kids. She can scoop 207 

these things into three red bags, and we will go meet her Wednesday at the train 208 

station. 209 

 210 

All speech samples were transcribed by three phonetically trained transcribers 211 

(consensus was reached in the few cases where the transcriptions differed; [26]) 212 

according to the International Phonetic Alphabet (IPA). The transcriptions include 213 

diacritics, and the associated audio files are available. For this study, we extracted 395 214 

transcribed speech samples and their audio from the Speech Accent Archive. The total 215 

number of native U.S.-born English speakers in this dataset was 115. The remaining 216 

280 speech samples belonged to speakers with a different native language or who 217 

were born outside of the United States.  218 

 219 

1.2. Obtaining NDL-based pronunciation distances 220 
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For every transcribed pronunciation, we extracted all possible sets of sequences of 221 

three sound segments (diacritics were ignored, and a separate segment was added to 222 

mark word boundaries) as cues. To model a native AE listener, we randomly selected 223 

about half (i.e. 58) of the native AE speakers. We used their pronunciations to 224 

generate the pronunciation cues, and paired these with meanings as outcomes (i.e. the 225 

pronunciation trigrams were linked to the corresponding meanings). We used only 226 

half of the native speakers for the listener model in order to prevent overfitting, i.e. 227 

learning the peculiarities of the speakers rather than the features of native American 228 

English. The pronunciation of the other half of the speakers is used to represent 229 

average American English speech to which the pronunciation of individual speakers is 230 

compared. (While we could have used the speech of a single speaker for the listener model 231 

and the speech of another individual speaker to represent native American English speech, 232 

this would have biased the model to the specific dialectal variants of these speakers.) As the 233 

association strength between cues and outcomes depends on the frequency with which 234 

they co-occur, we extracted word frequency information from the Google N-Gram 235 

Corpus [27]. The total frequency of each meaning outcome was equally divided 236 

among all different pronunciations associated with it. For example, if the frequency of 237 

the word ‘frog’ equals 580,000, the frequency of each of the 58 pronunciations was 238 

set to 10,000. We then estimated the weights of the model using the ‘ndl’ package in 239 

R (version 0.2.10) which implements the Danks equations [23] introduced above. The 240 

resulting network of association strengths between pronunciation cues and meaning 241 

outcomes represents a native AE listener. As an example, Table 3 shows part of the 242 

input used for estimating the weights and Table 4 shows the association strengths 243 

obtained after the weights have been estimated (i.e. the ‘adult’ association weights of 244 

a native AE listener). 245 
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 246 

It is clear from Table 4 that the cues found together with a certain outcome generally 247 

have a positive value. The more likely it is the cue is found together with the 248 

associated outcome (and, crucially, not with other outcomes), the higher the 249 

association strength between the two will be.  250 

 251 

Given the table of association strengths representing a simulated native AE listener, it 252 

is straightforward to determine the activations of each outcome for a certain 253 

pronunciation (converted to cues) by summing the association strengths between the 254 

cues in the pronunciation and the outcome. The top half of Table 5 shows that the 255 

pronunciations of native AE speakers strongly activate the corresponding outcome 256 

(the values are equal or very close to the maximum of 1).  257 

 258 

Of course, we can also use the association strengths (of the simulated native AE 259 

listener) to calculate the activations for accented speech. The bottom part of Table 5 260 

clearly shows that accented speech results in lower activations (and thus reduced 261 

understanding), compared to the pronunciations of native AE speakers (shown in the 262 

top part of Table 5). In some cases, a foreign speaker might use a cue which would 263 

never be used by a native AE speaker (such as ‘#xə’ in Table 5). As these cues were 264 

not encountered during the estimation of the model, no association strengths have 265 

been set for those cues and, consequently, their values do not contribute to the 266 

activation of the outcome.  267 

 268 

To determine pronunciation distances with respect to native American English, we 269 

exposed our model of a native AE speaker to both native American English speech as 270 
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well as accented English speech and investigated the activation differences of the 271 

meaning outcomes. We used the following procedure: 272 

 273 

1. For each of the native American English speakers not considered when 274 

constructing the listener model (i.e. the remaining 57 native AE speakers), we 275 

calculated the activation of the listener model for each of the 55 different 276 

meaning outcomes (i.e. all unique words in our dataset). Whenever an 277 

outcome occurred more than once (such as ‘we’, which occurs twice in the 278 

paragraph of text), we averaged the activations associated with the 279 

corresponding pronunciations (i.e. the associated cues). For each outcome, we 280 

subsequently averaged the activations across all 57 speakers. This is our 281 

baseline and can be interpreted as the activations (for 55 individual meanings) 282 

of our native AE listener model when being exposed to the speech of an 283 

average native AE speaker. 284 

2. For each individual speaker (mostly non-native, see below), we obtained the 285 

activations of our native AE listener model for each of the 55 meanings. 286 

Again, whenever an outcome occurred more than once, we averaged the 287 

activations associated with the corresponding pronunciations. 288 

3. For each individual speaker, we calculated the activation difference compared 289 

to the baseline for all 55 meanings separately. We then averaged these 290 

activation differences across the 55 meanings. This resulted in a single value 291 

for each speaker and represents the NDL-based pronunciation distance with 292 

respect to an average native AE speaker. 293 

 294 
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As the specific sample of speakers used for estimating the native American English 295 

listener model may influence the results, we repeated the random sampling procedure 296 

(in which 58 speakers were selected whose pronunciations were used to estimate the 297 

listener model) 100 times to generate 100 slightly different native AE listener models. 298 

Obviously, this also resulted in a change of the remaining 57 speakers who were used 299 

to represent an average AE speaker (see step 1, above). Consequently, we obtained 300 

100 (slightly different) NDL-based pronunciation distances for each individual 301 

speaker compared to an average AE speaker.  302 

 303 

1.3. Validating automatically obtained foreignness ratings 304 

We evaluated the computed pronunciation distances by comparing them to human 305 

native-likeness ratings. For this purpose, we developed an online questionnaire for 306 

native U.S. English speakers. In the questionnaire, participants were presented with a 307 

randomly ordered subset of 50 speech samples from the Speech Accent Archive. We 308 

did not include all speech samples, as our goal was to obtain multiple native-likeness-309 

judgments per sample. For each speech sample, participants had to indicate how 310 

native-like each speech sample was. This question was answered using a 7-point 311 

Likert scale (ranging from 1: very foreign sounding to 7: native AE speaker).  312 

Participants were not required to rate all samples, but could rate any number of 313 

samples.  314 

 315 

Of course, more advanced methods are possible to measure native-likeness, such as 316 

indirect measures which assess the understandability of the accented pronunciations in 317 

a certain context (cf. [25: Ch. 4]). However, as our dataset was limited to a small fixed 318 
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paragraph of text, we used a simple rating approach which, nevertheless, resulted in 319 

consistent ratings (see results, below). 320 

 321 

Via e-mail and social media we asked colleagues and friends to forward the online 322 

questionnaire to people they knew to be native AE speakers. In addition, the online 323 

questionnaire was advertised on Language Log by Mark Liberman. Especially that 324 

announcement led to an enormous amount of responses. As a consequence, we 325 

replaced the initial set of 50 speech samples five times with a new set to increase the 326 

number of speech samples for which we could obtain native-likeness ratings. As there 327 

was some overlap in the native AE speech samples present in each set (used to 328 

calibrate the ratings), the total number of unique samples presented for rating was 329 

286, of which 280 were samples from speakers who were not born in the U.S.  330 

 331 

2. Norwegian dialects 332 

2.1. Material 333 

The Norwegian dialect material is taken from the study of Gooskens and Heeringa 334 

[15], who perceptually evaluated the Levenshtein distance on the basis of IPA 335 

transcribed audio recordings of 15 Norwegian dialect speakers reading the fable “The 336 

North Wind and the Sun” (containing 58 unique words). The original dataset was 337 

created by Jørn Almberg and Kristian Skarbø and is available at 338 

http://www.ling.hf.ntnu.no/nos. The transcriptions (including diacritics) were made by 339 

the same person, ensuring consistency. Perceptual distances (reported in Table 1 of 340 

[15]) were obtained by asking 15 groups of high school pupils (in the corresponding 341 

dialect areas) to rate all 15 dialectal audio samples on a scale from 1 (similar to own 342 
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dialect) to 10 (not similar to own dialect). Perceptual dialect distances were then 343 

calculated by averaging these ratings per group. 344 

 345 

2.2. Methods 346 

Following the same procedure as described in Section 1.2, we converted the 347 

pronunciations for each of the 15 speakers in our sample to cues consisting of three 348 

sequential sound segments (diacritics were ignored, and a separate segment was added 349 

to mark word boundaries). The word frequencies were extracted from a Norwegian 350 

word frequency list (on the basis of subtitles and obtained from 351 

http://invokeit.wordpress.com/frequency-word-lists).  352 

 353 

To determine pronunciation distance between dialects Di and Dj from the perspective 354 

of a listener of dialect Di, we used the following procedure: 355 

 356 

1. We estimated the NDL model (i.e. resulting in a specific weight matrix 357 

associating cues with outcomes) using the cues on the basis of the 358 

pronunciations from the speaker of dialect Di. This model can be seen as 359 

representing an experienced listener (Li) of dialect Di.  360 

2. We expose Li to the cues on the basis of the pronunciations from dialect Di and 361 

measure the activation of each of the corresponding 58 meaning outcomes. 362 

(Because we only had a single speaker in our sample for each dialect, we 363 

could not use separate pronunciations for estimating the listener model and 364 

representing the speaker.). Whenever an outcome occurred more than once 365 

(some words were repeated), we averaged the activations associated with the 366 

corresponding pronunciations (i.e. the associated cues). These activations are 367 



16 

 

used as the baseline, and can be interpreted as the activations (for the 58 368 

individual meanings) of Li when being exposed to speech of its own dialect. 369 

3. We expose Li to the cues on the basis of the pronunciations of another dialect 370 

Dj and measure the (averaged, when a word occurred more than once) 371 

activation of each of the corresponding 58 meaning outcomes.  372 

4. For all 58 individual meaning outcomes, we calculated the difference between 373 

the activations of Li for Dj and the baseline Di and average these 58 differences 374 

to get a single value representing the NDL-based pronunciation distance 375 

between Di and Dj (from the perspective of Li). 376 

 377 

The above procedure is repeated for all combinations of Di and Dj resulting in 210 378 

NDL-based pronunciation distances (15 x 15, but the 15 diagonal values are excluded 379 

as they are always equal to 0). Table 6 shows these distances for a set of three 380 

Norwegian dialects. Note that the NDL-based pronunciation distances between these 381 

dialects are clearly asymmetric. The dialect of Bjugn is closer to the dialect of Bergen 382 

from the perspective of Bergen (0.545) than the dialect of Bergen is from the 383 

perspective of Bjugn (0.559). 384 

 385 

To evaluate these distances, we correlated them with the corresponding perceptual 386 

distances (obtained from [15]).  387 

Results 388 

1. Results for accented English speech 389 

A total of 1143 native American English participants filled in the questionnaire (658 390 

men: 57.6%, and 485 women: 42.4%). Participants were born all over the United 391 

States, with the exception of the state of Nevada. Most people came from California 392 



17 

 

(151: 13.2%), New York (115: 10.1%), Massachusetts (68: 5.9%), Ohio (66: 5.8%), 393 

Illinois (64: 5.6%), Texas (55: 4.8%), and Pennsylvania (54: 4.7%). The average age 394 

of the participants was 36.2 years (SD: 13.9) and every participant rated on average 395 

41 samples (SD: 14.0). Every sample was rated by at least 50 participants and the 396 

judgments were consistent (Cronbach’s alpha: 0.853).  397 

 398 

To determine how well our NDL-based pronunciation distances on the basis of 399 

trigram cues matched the native-likeness ratings, we calculated the Pearson 400 

correlation r between the averaged ratings and the NDL-based pronunciation 401 

distances for the 286 speakers. Since we had 100 sets of NDL-based pronunciation 402 

distances (based on 100 different random samplings of the native American English 403 

speakers used to estimate the model), we averaged the corresponding correlation 404 

coefficients, yielding an average correlation of r = -0.72 (p < 0.001). Note that the 405 

direction of the correlations is negative as the participants indicated how native-like 406 

each sample was, while the NDL-based pronunciation distance indicates how foreign 407 

a sample is. As a scatter plot clearly revealed a logarithmic relationship (see Figure 1), 408 

we log-transformed the NDL-based pronunciation distances, increasing the correlation 409 

to r = -0.80 (p < 0.001). The logarithmic relationship suggests that people are 410 

relatively sensitive to small differences in pronunciation in judging native-likeness, 411 

but as soon as the differences have reached a certain magnitude (i.e. in our case an 412 

NDL-based pronunciation distance of about 0.2) they hardly distinguish them 413 

anymore. The sensitivity to small differences is also illustrated by the (slight) increase 414 

in performance when trigram cues are used which incorporate diacritics. In that case, 415 

the correlation strength increases to r = -0.75 (r = -0.82 for the log-transformed NDL-416 

based pronunciation distances). These results are comparable with the performance of 417 
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the Levenshtein distance when applied to this dataset (r = -0.81, p < 0.001 for the log-418 

transformed Levenshtein distance; unpublished data). In fact, the Levenshtein 419 

distances and the NDL-based pronunciation distances also correlate highly, r = 0.89 420 

(p < 0.001).   421 

 422 

We should note that this correlation is close to how well individual raters agree with 423 

the average native-likeness ratings (on average: r = .84, p < .0001). Consequently, the 424 

NDL-based method is almost as good as a human rater, despite ignoring 425 

suprasegmental pronunciation differences (such as intonation). 426 

 427 

Figure 1 also shows that pronunciations which are perceived as native (i.e. having a 428 

rating very close to 7), may correspond to NDL-based pronunciation distances greater 429 

than 0. In this case, the NDL-based method classifies certain native-like features as 430 

being non-native. This may be caused by our relatively small sample of only 58 431 

speakers whose pronunciations were used to model the native AE listener. Real 432 

listeners have much more experience with their native language, and therefore can 433 

more reliably distinguish native-like from foreign cues. 434 

 435 

The aforementioned results are all based on using trigram cues. When using unigram 436 

cues instead, the correlation between the perceptual native-likeness ratings and the 437 

NDL-based pronunciation distances dropped to r = -0.54 (log-transformed: r = -0.57). 438 

When using bigram cues, the performance was almost on par with using trigram cues 439 

(r = -0.69, log-transformed: r = -0.79). Using unigram and/or bigram cues together 440 

with trigram cues did not affect performance, as these simpler cues are not 441 

discriminative in the presence of trigram cues.  442 



19 

 

 443 

2. Results for Norwegian dialects 444 

The correlation between the NDL-based pronunciation distances and the perceptual 445 

distances was r = 0.68 (p < 0.001), which is comparable to the correlation Gooskens 446 

and Heeringa [15] reported on the basis of the Levenshtein distance (i.e. r = 0.67). 447 

Similar to the first study, log-transforming the NDL-based pronunciation distances 448 

increased the correlation strength to r = 0.72 (p < 0.001). In line with the results for 449 

the accent data, the Levenshtein distances and the NDL-based pronunciation distances 450 

correlate highly, r = 0.89 (p < 0.001).  451 

 452 

The aforementioned results are all based on using trigram cues. Using unigram cues 453 

instead of trigram cues severely reduced performance (r = 0.10, log-transformed: r = 454 

0.31), whereas using bigram cues was almost as good as using trigram cues (r = 0.67, 455 

log-transformed: r = 0.71). Similar as before, adding unigram and/or bigram cues to 456 

the trigram cues did not really improve performance. In contrast to the accent data, 457 

incorporating diacritics in the cues also did not help; the correlation then dropped to r 458 

= 0.65 (log-transformed: r = 0.66). This is likely caused by the relatively small 459 

dataset.  460 

 461 

Discussion 462 

In the present paper we have shown that pronunciation distances derived from naive 463 

discriminative learning match perceptual accent and dialect distances quite well. 464 

While the results were on par with those on the basis of the Levenshtein distance, the 465 

advantage of the present approach is that it is grounded in cognitive theory of 466 

comprehension based on fundamental principles of human discrimination learning. 467 
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Furthermore, the Levenshtein distance is theoretically less suitable for modeling the 468 

degrees of difference in the perception of non-local and non-native speech because it 469 

is a true distance, i.e. always symmetric, while perceptions of similarity may also be 470 

asymmetric [15]. The NDL-based approach naturally generates asymmetrical 471 

distances.  472 

 473 

We noted above that the task of recognizing words based on phonetic cues is 474 

essentially a comprehensibility task. A second contribution of the present paper is 475 

therefore to demonstrate that models constructed to comprehend local speech 476 

automatically assign scores of non-nativeness (or of non-localness among dialects) in 477 

a way that models native speakers judgments.  478 

 479 

One may wonder why the NDL-based method only slightly improved upon the results 480 

of the Levenshtein distance for the Norwegian dataset, especially since that dataset is 481 

characterized by asymmetric perceptual distances. We note here that the 15 NDL 482 

models (one for each listener) are only based on the pronunciation of a single speaker. 483 

Consequently, it does not take into account the variation within each dialect (taken 484 

into account by listeners living in the dialect area), which would have allowed for 485 

more precise estimates of the association weights. A general limitation is that 486 

Gooskens and Heeringa [15] already indicated that intonation is one of the most 487 

important characteristics in Norwegian dialects, and no such cues have been used here 488 

(as these were not available to us), thereby limiting the ability to detect relevant 489 

asymmetries. Nerbonne and Heeringa ([28]: 563-564), on the other hand, speculate 490 

that there is a limit to the accuracy of validating pronunciation difference measures on 491 

the basis of aggregate judgments of varietal distance. If one supposes that poorer 492 
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measures are noisier – but not more biased – than better ones, then the noise will 493 

simply be eliminated in examining large aggregates. If this is right, we cannot expect 494 

to change mean differences by adopting more accurate measurements. They suggest 495 

that improved validation will therefore have to focus on smaller units such as 496 

individual words. 497 

 498 

While we have not explored this in the present paper, another important advantage of 499 

the NDL approach is that cues are not only restricted to phonetic segments. Cues with 500 

respect to pronunciation speed or other acoustic characteristics (such as intonation) 501 

can be readily integrated in an NDL model (e.g., linking cues representing different 502 

intonation patterns to the individual meanings). A problem of the NDL method, 503 

however, is that it only accepts discrete cues. A continuous measurement therefore 504 

needs to be discretized to separate cues, and this introduces a subjective element in an 505 

otherwise parameter-free procedure. 506 

 507 

As our datasets only consisted of a few dozen words, our model was highly simplified 508 

compared to the cognitive model of a human listener who will have access to 509 

thousands of words. It is nevertheless promising that pronunciation distances on the 510 

basis of our simplified models match perceptual distances at least as well as current 511 

gold standards.  512 
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Figure 600 

 601 

Figure 1. Logarithmic relationship between NDL-based pronunciation distances and 602 

perceptual distances.  603 
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Tables 604 

Table 1. Basic Levenshtein distance alignment. 605 

w ɛ n  z d e ɪ 

w ɛ n ə s d e  

   1 1   1 

 606 

Table 2. Levenshtein distance alignment with sensitive sound distances. 607 

w ɛ n  z d e ɪ 

w ɛ n ə s d e  

   0.031 0.020   0.030 

Table 3. Part of the table used for estimating the association strengths. The ‘#’ marks 608 

the word boundary.  609 

Speaker Outcome Pronunciation Cues Frequency 

english23 with [wɪθ] #wɪ, wɪθ, ɪθ# 28,169,384 

english167 with [wɪð] #wɪ, wɪð, ɪð# 28,169,384 

english23 her [həɹ] #hə, həɹ, əɹ# 852,131 

english167 her [ɚ] #ɚ# 852,131 

 610 

 611 

Table 4. The association strengths for the cues and outcomes in Table 1 for our 612 

simulated native AE listener after these have been estimated on the basis of the input 613 

of 58 randomly selected native AE speakers. 614 

Cue Association strength for ‘with’ Association strength for ‘her’ 

#wɪ 0.2519 0.0000 

wɪθ 0.3738 0.0000 

ɪθ# 0.3738 0.0000 

wɪð 0.3741 0.0000 

ɪð# 0.3741 0.0000 

#hə 0.0000 0.4973 

həɹ 0.0000 0.2433 

əɹ# 0.0000 0.2594 

#ɚ# 0.0000 1.0000 
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Table 5. The activations of different outcomes on the basis of the association 615 

strengths between the cues and outcomes for our simulated native AE listener (shown 616 

in Table 2). 617 

Speaker Outcome Pronunciation Cues Activation of outcome 

english23 with [wɪθ] #wɪ, wɪθ, ɪθ# 0.9995 

english167 with [wɪð] #wɪ, wɪð, ɪð# 1.0000 

english23 her [həɹ] #hə, həɹ, əɹ# 1.0000 

english167 her [ɚ] #ɚ# 1.0000 

mandarin10 with [wɪz] #wɪ, wɪz, ɪz# 0.2519 

serbian10 her [xəɹ] #xə, xəɹ, əɹ# 0.2594 
 618 

 619 

Table 6. Part of the NDL-based Norwegian dialect pronunciation distances.  620 

 Bergen Bjugn Bodø 

Bergen X 0.545 0.584 

Bjugn 0.559 X 0.319 

Bodø 0.574 0.314 X 

 621 


